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Abstract Heat transfer due to natural convection inside a closed cavity must be modeled to
include the effects of turbulence if the Rayleigh number is sufficiently large. This study assesses the
performance of several commonly used numerical turbulence models such as k-1, Renormalized
Group k-1 and Reynolds stress model, in predicting heat transfer due to natural convection inside
an air-filled cubic cavity. The cavity is maintained at 307K on one side and 300K on the opposite
side with a linear temperature variation between these values on the remaining walls. Two cases
are considered, one in which the heated side is vertical, and the other in which it is inclined at 458
from the horizontal. Rayleigh numbers of 107, 108, 109 and 1010 are considered. Results of the
three turbulence models are compared to experimentally determined values or values from
correlations. It was found that the standard k-1 model was the most effective model in terms of
accuracy and computational economy.
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Nomenclature
Cp ¼ constant pressure specific heat

of air
ER ¼ expansion rate of the computational

grid
g ¼ acceleration due to gravity
h ¼ convection coefficient
gi ¼ component of gravitational

vector
Gi ¼ turbulence production term, k-1

models
Gij ¼ turbulence production term, Reynolds

stress model
k ¼ thermal conductivity of air
L ¼ side length of cubical cavity
Nu ¼ average wall Nusselt number,

¼ q00L=kDT
P ¼ air pressure
Prt ¼ turbulent Prandtl number
q00 ¼ average wall heat flux
R ¼ gas constant of air
Ra ¼ Rayleigh number,

¼ g brDT L 3=ma
T ¼ temperature in kelvin
ut ¼ friction velocity
x ¼ arbitrary spatial coordinate

y ¼ normal distance from the wall
Y+ ¼ off-wall Reynolds number, ¼ rut y=m

Greek symbols
a ¼ thermal diffusivity of air, ¼ k=rCp

b ¼ thermal expansion coefficient of air¼
2ð›r=›TÞp=r

DT ¼ temperature difference between hot
and cold faces of cavity

Dx ¼ local numerical grid spacing
r ¼ air density
m ¼ absolute viscosity of air
mt ¼ turbulent eddy viscosity
w ¼ tilt angle of hot cavity face from the

horizontal

Subscripts
c, h ¼ pertaining to the cold and hot walls of

the cavity respectively
cor ¼ denotes value determined from

correlation
exp ¼ denotes experimentally determined

value
i, j ¼ indexing integers
m ¼ mean
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Introduction
In numerous industrial settings, heat transfer within enclosed spaces will be
influenced by natural convection. If the Rayleigh number of the convective
process is sufficiently large, heat transfer will be augmented by turbulent fluid
motion. An engineer’s first instinct in determining the magnitude of such
processes will be to use numerical modeling algorithms with a standard
turbulence model such as k-1 (Launder and Spalding, 1972, 1974), Renormalized
Group k-1 (Choudhury, 1993), or Reynolds stress model (RSM) (Launder et al.,
1975). Although this approach is not erroneous, it does make the dubious
assumption that each one of these models is appropriate for the given problem
with any variation in respective solutions being attributable to the
sophistication of the model’s derivation. However, there is no assurance that
even a mathematically rigorous model, such as the five-equation will provide
any greater accuracy than the two-equation k-1 in a natural convection
problem. The only means available to determine the appropriateness of one
model over the other is through comparison to a definitive benchmark problem
that provides reliable data.

Although many options are available for a simple benchmark test case, one
with a physically realizable solution is not readily determined. Consider a
simple two-dimensional air-filled square cavity with two adiabatic walls and
two isothermal walls of differing temperatures. At first glance it would appear
to be a routine matter to construct a model in a laboratory environment.
However, as Le Quere (1991) observed, this problem by its very nature was
“without physical meaning” for two reasons. Primarily, the adiabatic walls that
separate the isothermal boundaries cannot be precisely achieved in an air-filled
cavity (El Sherbiny et al., 1982). But also, the assumption of a purely
two-dimensional flow field is questionable since three-dimensional
perturbations can arise in similar confined spaces (Penot et al., 1990). These
difficulties are reflected in the work of a number of researchers (Viskanta et al.,
1986; Yguel and Vullierma, 1986; Le Peutrec and Lauriat, 1990) who show
discrepancy between analytical and experimental values as a result of
non-physical wall assumptions.

The difficulty in the classical cavity problem stems from the corners where
an ideally isothermal boundary is in contact with an adiabatic wall. This
situation is easily modeled numerically but impossible to implement
experimentally with any accuracy. One alternative would be to alter the
benchmark problem to accommodate this physical constraint. However, such a
modification would be subjective in nature diminishing its usefulness as a
benchmark problem. Another alternative would be to replace the adiabatic wall
condition with one that is more realizable but as objective as the adiabatic wall.
A linear temperature gradient between hot and cold surfaces along the
remaining walls is still general in nature but more importantly, it has a greater
chance of being accurately recreated in the laboratory. Recent work by
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Leong et al. (1998, 1999) has shown that a cubic cavity, as shown in Figure 1,
with linear temperature gradients in four non-isothermal walls, can be designed
carefully to produce an average Nusselt number on the cold wall to an accuracy
of about 1.2 percent.

The objective of this study is to use the experimental results of Leong et al. to
assess the performance of the k-1, RNG k-1, and RSM turbulence models for
natural convection problems inside a closed cubic cavity. It is hoped that this
study will contribute to a body of knowledge that will guide analysts in
accurately modeling enclosed natural convection and provide a basis for future
algorithm refinement.

Experimental approach
The experiments of Leong et al. (1998) were conducted on an apparatus
consistent with the configuration shown in Figure 1. The temperature of the hot
wall was fixed at Th¼307 K, while the cold wall was Tc¼300 K. The length of a
side of the cube was L ¼ 0.1272 m. The Rayleigh number is traditionally
defined as

Ra ;
grbDT L3

ma
: ð1Þ

Since air at low pressures can be treated as an ideal gas, the Rayleigh number
can be written as,

Ra ¼
gCp DTP

2 L3

mk R 2 T 3
: ð2Þ

Equation (2) indicates that the Rayleigh number can be varied extensively
by changing the temperature difference DT, air pressure P and cavity size L.
In the experiments, the Rayleigh number was varied by variation of the air

Figure 1.
The cubic cavity

showing orientation of
thermal boundary

conditions
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pressure inside the cavity, and the air properties were evaluated based on
the mean temperature (i.e. Tm¼ (Th+Tc)/2) and the specific pressure of
a desired Ra.

The average Nusselt number on the cold wall is determined by:

Nu ;
hL

k
¼

q00L

kDT
: ð3Þ

The average wall heat flux q00 was evaluated using an energy balance method
(Hollands, 1988) which utilizes a heat flux meter sandwiched between an
electrically heated copper plate and an isothermal main copper plate. A heat
flux meter is a highly sensitive device which measures temperature differences
(and hence heat flux through it) in terms of electrical potential. This method is
not intrusive and, hence, it does not disturb or distort the flow in the cavity.
Also, unlike any optical method, it does not require any transparent window.
Therefore, the linear temperature gradients in the four non-isothermal walls
can be achieved using highly conductive copper plates. Although, the radiative
heat transfer was found to be very small due to small temperature differences
and low emissivity of polished copper surfaces in the cavity, its effects were
taken into consideration and corrected when determining the actual convective
heat transfer. More details on the experimental methods and their measurement
errors can be found in the work of Leong (1996) or Leong et al. (1998).

Values of wall average Nusselt number are provided for a variety of
inclination angles w and Rayleigh numbers. Since the fundamental behavior
of the convection flow will change as the cube is rotated from the horizontal,
three cases of inclination angle are considered. At an inclination of w ¼ 908,
both isothermal surfaces are oriented vertically, and stable convective
boundary layers are formed. At w ¼ 08, the hot surface is at the bottom of
the cube with the cold side at the top. In this case, plumes of buoyant fluid will
rise from the hot surface towards the cold in an unsteady chaotic manner. These
two extreme test cases are selected along with an intermediate case of w ¼ 458.

Rayleigh numbers must be chosen such that the induced convective flow
will become turbulent. Markatos and Pericleous (1984) developed a similar
square cavity problem with two differentially-heated vertical walls and two
adiabatic horizontal walls for 103 # Ra # 1016. Based on their findings, they
concluded that the effects of turbulence on heat transfer is not significant until
Ra . 106. Therefore, this investigation begins modeling and comparisons to
experiment at a Ra of 107. Leong et al. (1998, 1999) were meticulous in designing
their experiments and presented a detailed error analysis on their experiments,
giving an overall uncertainty of about 1.2 percent on measured Nu values.
Experimental values of average Nusselt number for various inclinations and
Rayleigh numbers are given in Table I.

Markatos and Pericleous (1984) were able to derive three Nu-Ra correlations
from their numerical results for a laminar range ð103 # Ra # 106Þ and two
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turbulent ranges (106 , Ra # 1012 and 1012 , Ra # 1016). They also found
that their numerical results were in good agreement with an experimental
turbulence correlation up to Ra of 1012, even though the correlation was derived
for 2:8 £ 104 # Ra # 1:55 £ 107. Owing to the findings of Markatos and
Pericleous and lack of experimental Nu at higher Ra, it is assumed that the
correlations of Leong et al. (1999) may be extended up to Ra of 1010 for
comparison with the present predictions. The following are the experimental
Nu-Ra correlations from Leong et al. (1999):

w ¼ 08 : Nu ¼ 0:1194 Ra0:3021 105 # Ra # 108 ð4Þ

w ¼ 458 : Nu ¼ 0:1492 Ra0:2955 106 # Ra # 108 ð5Þ

w ¼ 908 : Nu ¼ 0:08461 Ra0:3125 104 # Ra # 108 ð6Þ

Numerical algorithm
The analysis is conducted utilizing the commercial computational fluid
dynamics (CFD) code “Fluent” (1996). A number of turbulence models are
available within Fluent including k-1, RNG k-1, and the RSM. Fluent is a finite
volume solver with a number of near-wall treatments including standard
wall functions, non-equilibrium wall functions, and a two-layer zonal model.
Given the expected variations in character of the flow field between inclinations
of 0 and 908, a two-layer approach is deemed to be the most appropriate.
In this approach, boundary layers are partitioned into two separate zones: a
viscous sublayer which remains entirely laminar near the walls, and a fully
turbulent region away from the walls. Flow field parameters within the viscous
sublayer are determined through a model proposed by Wolfstein (1969), while
the turbulent region is treated with the selected turbulence model. Although the
w ¼ 908 case was expected to produce readily defined boundary layers
appropriate for wall functions, the w ¼ 08 case, with its unsteady convection,
was not. In this instance, the boundary layer behavior assumptions inherent to
wall functions were not justifiable. The two-layer approach being more general
was used exclusively throughout this study. In addition, trial modeling of
the w ¼ 908 case with various wall treatments indicated that the two-layer
approach produced the most rapid convergence rates.

Ra w ¼ 08 (percent) w ¼ 458 (percent) w ¼ 908 (percent)

106 7.883^1.2 8.837 ^ 1.1 6.383 ^ 1.1
107 15.38^1.2 17.50 ^ 1.2 12.98 ^ 1.2
108 31.22^1.4 34.52 ^ 1.2 26.79 ^ 1.3

Source: Leong et al., 1999
Table I.

Experimental Nuexp
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The effects of turbulence are introduced into the momentum equations through
a buoyancy term derived from the Boussinesq approximation. The fluid
properties are treated as polynomial functions of temperature at the specific
pressure of a desired Ra value. In the turbulence models, a source term is
included to account for turbulent kinetic energy production. For the k-1 models
the term has the form:

Gi ¼ 2
gi
r

mt

Prt

›r

›xi
: ð7Þ

In the Reynolds stress formulation, a general production tensor is used:

Gij ¼ b
mt

Prt
gi
›T

›xj
þ gj

›T

›xi

� �
: ð8Þ

Grid characteristics
Instances commonly arise in numerical analysis where the character of a
boundary layer can be estimated with accuracy, allowing for local grid
refinement. Node spacing can be made very small in the normal direction at the
wall to capture the expected high gradients there. For the present cavity
problem, the presence of a buoyancy induced boundary layer cannot be
assured. For the w ¼ 908 case, stable boundary layers on all surfaces can
be anticipated due to the vertical orientation of the isothermal surfaces.
However, for the w ¼ 08 case this will certainly not be the case. It is not known
if grid clustering on the walls will have any effect under these circumstances.
Furthermore, if boundary layer refinement is imposed, it is not known how the
grid expansion rate from the surface will affect the solution. Therefore, as a
precursor to the numerical study, an assessment of the effects of grid off-wall
spacing and expansion rate was conducted.

The assessment used two-dimensional grids to allow rapid testing over
a wide range of grid configurations. The off-wall spacing was measured as
the distance from the wall to the first off-wall point normal to the surface.
The expansion rate, ER, of a grid is defined as the ratio of distances between
adjacent pairs of nodes in a direction normal to the wall:

ER ¼
Dxiþ1

Dxi
ð9Þ

It should be noted that an expansion rate of 1 describes a grid with uniform
spacing. The values produced on uniform grids are taken as a benchmark
solution for this assessment since their solutions are expected to have a higher
level of accuracy compared to non-uniform grids due to their lower truncation
error.

Tests are computed for a Rayleigh number of 108 on all three inclination
angles using the standard k-1. Four off-wall spacings were used:
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0.05, 0.0025, 0.00125, and 0.000625 m. Expansion rates were allowed to vary
between 1 and 1.9 at most. The average Nusselt number was computed on the
cold wall and comparisons were made based on two parameters. First, the
absolute percentage difference between a value on a grid with a given ER, and
that obtained on a uniform grid with the same off-wall spacing. Second, the
absolute percent difference between values on uniform grids with various
off-wall spacings and a uniform grid with 0.0003125 m off-wall spacing.

The average Nusselt numbers found for the w ¼ 908 case are presented in
Table II. Each row lists the expansion rate, the Nusselt number, and the
absolute percentage difference between the given Nusselt number and the value
obtained on the uniform mesh with the same off-wall spacing. Clearly, for a
given off-wall spacing, the variation in expansion rate has little effect on the
solution. The difference in solutions between a uniform grid and a non-uniform
grid does not exceed 6.1 percent. With an expansion rate below 1.3 the
difference does not exceed 2 percent. However, if values on uniform grids are
compared, as in Table III, an interesting result emerges. The difference in

ER Nu Percentage difference

Off-wall ¼ 0.005m
1.48 20.27 0.82
1.30 20.33 0.54
1.20 20.37 0.36
1.05 20.43 0.08
1.00 20.44 –

Off-wall ¼ 0.0025m
1.87 27.87 2.30
1.42 28.20 1.16
1.25 28.34 0.66
1.20 28.37 0.54
1.05 28.50 0.12
1.00 28.53 –

Off-wall ¼ 0.00125m
1.90 24.97 6.06
1.51 25.77 3.07
1.34 26.09 1.86
1.21 26.29 1.10
1.10 26.44 0.53
1.00 26.59 –

Off-wall ¼ 0.000625m
1.91 24.26 2.10
1.48 24.53 1.00
1.31 24.66 0.50
1.15 24.74 0.16
1.05 24.76 0.05
1.00 24.78 –

Table II.
Effect of ER for

different off-wall
spacings and w ¼ 908
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Nusselt number between a uniform grid with 0.0025 m off-wall spacing and that
of a uniform grid with 0.0003125 m spacing is about 21 percent, a large change.
Table III also provides values of the highest observed value of Y + on the cold
wall, which should be of order 1 in a two-layer boundary approach. Even with
the largest off-wall spacing considered, the two-layer approach is valid.

Similar results for the w ¼ 45 and 08 cases are given also in Tables IV and V.
For the w ¼ 08 case it should be noted that the value of Nusselt number was
averaged over a long period of time to obtain a fixed value. The results shown
for these cases are consistent with those presented in the w ¼ 908 case. Again,
changes in grid expansion rates have a much smaller influence on Nusselt
number than the off-wall spacing. The implication of this for grid generation is
that the selection of an off-wall spacing is of greater importance than the
expansion rate. Furthermore, if the off-wall spacing is limited to a maximum
of 0.00125 m, the expected Y + values will be of order 1 meaning that the
two-layer boundary model will be valid. Three cubic grids were created with

ER Nu Percentage difference

Off-wall ¼ 0.005m
1.48 20.24 2.37
1.30 20.39 1.68
1.20 20.49 1.16
1.05 20.66 0.32
1.00 20.73 –

Off-wall ¼ 0.0025m
1.87 25.96 3.74
1.42 26.28 2.54
1.25 26.79 0.65
1.20 26.83 0.49
1.05 26.95 0.04
1.00 26.96 –

Off-wall ¼ 0.00125m
1.90 23.41 1.94
1.51 22.93 0.15
1.34 22.46 2.19
1.21 22.54 1.86
1.10 22.63 1.44
1.00 22.96 –

Off-wall ¼ 0.000625m
1.91 22.45 2.56
1.48 21.72 0.79
1.31 21.44 2.06
1.15 21.46 1.95
1.05 21.52 1.67
1.00 21.89 –

Table III.
Effects of ER for
different off-wall
spacings and w ¼ 458
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varying degrees of refinement, allowing an assessment of the sensitivity of
each model to grid resolution. The details of each grid are specified in Table VI.

A number of significant findings can be concluded from the results of the
grid characteristic study. Primarily, the initial off-wall spacing has a stronger

ER Nu Percentage difference

Off-wall ¼ 0.005m
1.48 17.86 8.40
1.30 18.29 6.19
1.20 18.65 4.34
1.05 19.22 1.40
1.00 19.49 –

Off-wall ¼ 0.0025m
1.87 17.92 2.54
1.42 17.85 2.94
1.25 18.30 0.50
1.20 18.30 0.50
1.05 18.43 0.22
1.00 19.39 –

Off-wall ¼ 0.00125m
1.90 16.32 1.98
1.51 16.39 1.62
1.34 16.51 0.86
1.21 16.51 0.86
1.10 16.65 0.00
1.00 16.65 –

Off-wall ¼ 0.000625m
1.91 15.02 7.84
1.48 15.82 2.97
1.31 15.88 2.57
1.15 16.02 1.75
1.05 16.05 1.52
1.00 16.30 –

Table IV.
Effects of ER for
different off-wall

spacings and w ¼ 08

w ¼ 908 w ¼ 458 w ¼ 08

Off-wall (m) Nu
Percentage
difference Y + Nu

Percentage
difference Y + Nu

Percentage
difference Y +

0.005 20.44 12.9 6.7 20.73 5.88 7.6 19.49 26.48 6.2
0.0025 28.53 21.55 5.3 26.96 22.39 4.8 18.39 19.33 2.4
0.00125 26.59 13.27 3.3 22.96 0.04 2.7 16.65 8.05 1.2
0.000625 24.78 5.58 1.7 21.89 0.01 1.4 16.30 5.78 0.5
0.0003125 23.47 – 0.9 22.03 – 0.8 15.41 – 0.3

Table V.
Effects of uniform grid

sizes for different
inclination angles w
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influence on solution accuracy than does grid expansion rate. Although the
off-wall finding may not in general be novel, in the context of the enclosed cubic
cavity with the range of thermal boundary conditions considered it is
significant. Finally, this analysis provides the guidance for generating the three
model grids and the verification for use of the two layer approach for each grid.

Results and discussion
The case where the inclination is 08 and the hot surface is on the bottom of the
cube, is somewhat of a pariah. Convectional instabilities lead to chaotic fluid
motion making an unsteady numerical solution difficult to achieve. In spite of
time averaging of the cold-wall Nusselt number the numerical values do not
compare well with the experiment. In Figure 2, the average Nusselt number is
plotted as a function of time for the 30 £ 30 £ 30 grid with Ra ¼ 108, w ¼ 08,
and the standard k-1 model. Taking a time average of the Nusselt number
yields a value of 19.9 compared to 31.22 in the experiment. Further, grid
refinement does not alter these poor numerical results appreciably. Similar
under-predictions of about 35-40 percent compared to the correlated Nusselt
number (Nucor) by equation (4) are also obtained for Ra of 109 with all the three

Layout Off-wall (m) ER Nodes

15 £ 15 £ 15 0.00125 1.6 4,096
30 £ 30 £ 30 0.000625 1.24 2,9791
60 £ 60 £ 60 0.0003125 1.11 22,6981

Table VI.
Test grid specifications

Figure 2.
The average Nusselt
number on the cold wall
for Ra ¼ 108, w¼ 08 vs
time. Time averaged
Nu ¼ 19.9, while
Nuexp¼31.22
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grid sizes and three turbulence models. As an additional test, the same case is
recomputed with a Rayleigh number of 106 as a case of laminar natural
convection flow. The result is shown in Figure 3, producing a time average
Nusselt number of 7.44 which compares more favourably to the experimental
value of 7.88. This result suggests that turbulent heat transport is not being
modeled correctly. Since the laminar case with the same grid produced a far
better result, the only conclusion that can be reached is that a degree of
modeling difficulty exists in turbulent natural convection associated with the
heating-from-below case. The two other turbulence models considered did not
alter this conclusion. For this reason, further analysis using the w ¼ 08 case
was not presented. Clearly, further work for unsteady turbulence modeling of
natural convection flows for this case is needed.

The results of the w ¼ 90 and 458 cases compared significantly better to
experimental values. Results for Ra ¼ 107 and 108 are presented in
Tables VII-IX for the grid sizes 15 £ 15 £ 15, 30 £ 30 £ 30, and 60 £ 60 £ 60,
respectively. Whereas, for Ra ¼ 109 and 1010, Tables X-XII tabulate the results
for the respective three grid sizes. The performance of each turbulence model is
assessed by a comparison of the percent absolute difference between the
computed cold-wall Nusselt number and the experimental or correlational
value for each grid size, inclination and Rayleigh number. For the case of
Ra ¼ 107 and w ¼ 908, both standard k-1 and RNG k-1 do equally well with
errors less than 2 percent. The RSM produces approximately twice the error for
this case than the k-1 models. For this low intensity turbulence problem, the k-1
models appear more adept at resolving the vertically driven boundary layers.
If the Rayleigh number is increased to 108, the differences between the models

Figure 3.
The average Nusselt

number on the cold wall
for Ra ¼ 106, w¼08 vs

time. Time averaged
Nu ¼ 7.44, while

Nuexp¼7.88
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disappear and the error values increase to levels approaching 10 percent.
As the Ra number is increased further to 109 and 1010 in the w ¼ 908 case,
errors remain relatively close to 10 percent for both k-1 models but are
somewhat higher for the RSM. The comparison to experiment also reveals that
for the higher Ra numbers, each model tends to under predict the turbulence
enhanced heat transfer rate, except for two cases of k-1 model (with Ra ¼ 109 at
15 £ 15 £ 15 grid size and Ra ¼ 1010 at 30 £ 30 £ 30 grid size). This apparent

Ra ¼ 107 Ra¼108

458

(Nuexp¼17.50)

908

(Nuexp¼12.98)

458

(Nuexp¼34.52)

908

(Nuexp¼26.79)

Model Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank

Std.

k-1 14.29 18.3 2 12.79 1.5 2 26.42 23.5 2 25.39 5.2 1

RNG

k-1 14.13 19.3 3 12.83 1.2 1 25.65 25.7 3 24.91 7.0 2

RSM 14.33 18.1 1 12.53 3.5 3 26.87 22.2 1 24.87 7.2 3

Table VII.
Difference with respect
to Nuexp and ranking of
turbulence models for
15£ 15 £ 15 grid

Ra ¼ 107 Ra¼108

458 (Nuexp¼17.50) 908 (Nuexp¼12.98) 458 (Nuexp¼34.52) 908 (Nuexp¼26.79)

Model Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank

Std.

k-1 16.40 6.3 2 12.92 0.46 2 28.00 18.9 1 24.29 9.3 2

RNG

k-1 16.42 6.3 1 13.00 0.15 1 27.08 21.6 2 24.36 9.1 1

RSM 15.58 11.0 3 12.45 4.1 3 25.58 25.9 3 23.98 10.5 3

Table IX.
Difference with respect
to Nuexp and ranking of
turbulence models for
60£ 60 £ 60 grid

Ra ¼ 107 Ra¼108

458 (Nuexp¼17.50) 908 (Nuexp¼12.98) 458 (Nuexp¼34.52) 908 (Nuexp¼26.79)

Model Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank

Std.

k-1 16.21 7.4 2 12.88 0.77 2 28.53 17.4 1 24.37 9.0 1

RNG

k-1 16.26 7.1 1 12.95 0.23 1 28.01 18.9 3 24.36 9.1 2

RSM 15.56 11.1 3 12.45 4.1 3 28.06 18.7 2 24.06 10.2 3

Table VIII.
Difference with respect
to Nuexp and ranking of
turbulence models for
30£ 30 £ 30 grid
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weakness is even more evident when a level of instability is introduced as
in the w ¼ 458 case. Here, the predicted Nusselt numbers are as much
as 25 percent or more below the experimental values. It should also be noted
that grid refinement had little effect on the final outcome. For the low
turbulence intensity cases, Ra ¼ 107, only a slight improvement was achieved
with grid refinement. For the more intense turbulence cases, such as for
Ra $ 108, no discernable benefit is seen with grid refinement. In some cases,
grid refinement leads to poorer results, suggesting that the error seen is due to
turbulence modeling and not an under-resolved flow field.

Ra ¼ 109 Ra¼1010

458 (Nucor¼68.12) 908 (Nucor¼54.94) 458 (Nucor¼134.5) 908 (Nucor¼112.8)

Model Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank

Std.

k-1 59.92 12.0 2 59.42 8.1 2 107.6 20.0 2 107.5 4.7 2

RNG

k-1 60.60 11.0 1 59.99 9.2 3 108.4 19.4 1 108.6 3.7 1

RSM 54.83 19.5 3 54.92 0.05 1 93.6 30.4 3 84.02 25.5 3

Table X.
Difference with respect
to Nucor and ranking of

turbulence models for
15£ 15 £ 15 grid

Ra ¼ 109 Ra¼1010

458 (Nucor¼68.12) 908 (Nucor¼54.94) 458 (Nucor¼134.5) 908 (Nucor¼112.8)

Model Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank

Std.

k-1 53.30 21.7 2 49.95 9.09 2 115.8 13.9 2 118.4 4.9 1

RNG

k-1 54.20 20.4 1 50.80 7.54 1 120.0 10.8 1 120.8 7.1 2

RSM 50.05 26.5 3 48.55 11.6 3 107.2 20.3 3 104.1 7.8 3

Table XI.
Difference with respect
to Nucor and ranking of

turbulence models for
30£ 30 £ 30 grid

Ra ¼ 109 Ra¼1010

458 (Nucor¼68.12) 908 (Nucor¼54.94) 458 (Nucor¼134.5) 908 (Nucor¼112.8)

Model Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank Nu

Percentage

difference Rank

Std.

k-1 50.61 25.7 2 47.30 13.9 2 107.8 19.9 1 103.0 8.7 2

RNG

k-1 51.34 24.6 1 47.65 13.3 1 106.9 20.5 2 106.5 5.6 1

RSM 48.51 28.8 3 47.01 14.4 3 96.7 28.1 3 93.1 17.5 3

Table XII.
Difference with respect
to Nucor and ranking of

turbulence models for
60£ 60 £ 60 grid
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An alternative means of assessing the performance of each model is to use a
decision matrix based on relative rankings, as indicated in Tables VII-IX for
lower turbulence intensity and Tables X-XII for higher turbulence intensity.
For instance, the lowest error model for a particular case is assigned a rank of
“1”, while the poorest receives “3”. A sum of the rankings will provide an
indication of overall performance. In addition, general performance can also be
evaluated by the average of the percentage errors. Tables XIII-XIV tabulate
the sums of the rankings and averages of the errors according to turbulence
intensities and orientations. Clearly, from the overall performance, the three
turbulence models are at least 10 percent better in predicting the w ¼ 908 case
with vertical boundary layer than the w ¼ 458 case. The performance of the
standard k-1 and RNG k-1 models are almost identical for the lower turbulence
intensity cases with 20 and 21 points, respectively, while the RSM is generally
poorer with a score of 31. With 1.2 percent and 0.1 percent less error for the
w ¼ 45 and 908, respectively, the standard k-1 is preferred over the RNG k-1
model for the lower turbulence intensity cases. However, for the higher
turbulence intensity cases, the RNG k-1 performs better than the standard k-1
model with 1.1 percent and 0.5 percent less error for the w ¼ 45 and 908,
respectively. Also the RNG k-1 out-performs the standard k-1 model by six
points, while it out-performs the RSM by 18 points in the higher turbulence
intensity cases. If the computational cost associated with each model is also
considered, the standard k-1 is viewed more favorably than the RNG k-1 model,
due to the fact that the RNG k-1 with some additional cost above that of the
standard k-1 does not improve the results significantly for the higher
turbulence intensity cases. The additional cost for computation and storage for
the RSR is significantly higher than the k-1 models owing to the larger number
of equations solved and variables stored. Generally, the RSM produces results

458 908 Overall

Model
Sum

of rank
Average of errors

(percent)
Sum

of rank
Average of errors

(percent)
Sum

of rank
Average of errors

(percent)

Std. k-1 11 18.9 11 8.2 22 13.5
RNG k-1 7 17.8 9 7.7 16 12.8
RSM 18 25.6 16 12.8 34 19.2

Table XIV.
Overall performance for
Ra ¼ 109 and 1010

(higher turbulence
intensity cases)

458 908 Overall

Model
Sum

of rank
Average of errors

(percent)
Sum

of rank
Average of errors

(percent)
Sum

of rank
Average of errors

(percent)

Std. k-1 10 15.3 10 4.4 20 9.8
RNG k-1 13 16.5 8 4.5 21 10.5
RSM 13 17.8 18 6.6 31 12.2

Table XIII.
Overall performance for
Ra ¼ 107 and 108 (lower
turbulence intensity
cases)
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with significantly higher errors than the k-1 models, especially for the higher
turbulence intensity case.

Conclusions and recommendations
This study presents a comparison between the predicted values of average
Nusselt number and experimental or correlated results for three turbulence
models: standard k-1, RNG k-1, and RSM. All comparisons where made for an
air-filled cubic cavity over Rayleigh numbers of 107, 108, 109 and 1010 and two
geometrical configurations. The conclusions drawn from this work can be
summarized in the following points.

(1) No turbulence model considered could adequately reproduce the
experimental results for the unstable case with heating-from-bottom
surface ðw ¼ 08Þ. A laminar flow calculation for a lower Rayleigh
number demonstrated that the significant error was due to the inability
of each model to estimate the buoyancy induced turbulence intensity.

(2) Further evidence of modeling difficulty was apparent when grid
refinement was considered. For all Rayleigh numbers considered and
both hot-wall orientations (w ¼ 458 and 908) no significant benefit was
observed with grid refinement. This suggests that the errors observed
were due to turbulence modeling in natural convection and not due to an
under-resolved flow field.

(3) For low intensity turbulence with Ra ¼ 107 and vertical heated walls,
w ¼ 908, the k-1models were able to predict the cold-wall Nusselt number
to within 2 percent of the experimental value, while the RSM did
somewhat worse. As the Ra was increased to 108, the differences between
the models lessened and the error increased to about 10 percent. However
further increase in Ra leads to greater differences between models, and
the errors generally remain within about 10 percent for the k-1 models
and somewhat worse for the Reynolds stress model. For problems with
distinct boundary layers (w ¼ 908), the standard k-1 model performs as
well as any model considered, but with the lowest computational cost.

(4) For the partially inclined heated surface cases, w ¼ 458, error was
generally higher. As the turbulence intensity increased, the error
increased as well reaching an average value of about 18 percent for the
k-1 models and about 26 percent for the RSM. In some instances, the
RSM had almost twice the error as the k-1 models. Again, the standard
k-1 model performs almost as well as the RNG k-1 model for the w ¼ 458
case, but with lower computational cost.

(5) The RSM did not improve on the results of either of the other models in
any case. In light of this and its substantially greater computational cost,
the RSM is not appropriate for air-filled closed cavity natural convection
problems.
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